Apprenticaship Learning via Invese Reinforcement Learning
. Key misight : Instant of learning the policy from the "expert", it loans a reverse
function
. Rediminaries :
S: status, A: actions,
$$T = \{P_{2n}\}$$
 transfer probability, $T \in [0, i]$ denored function
p: Unital-state distribution, $R: S \mapsto A$ recent function ≤ 1 . Model R (unitarial neuron of function)
p: fielding $S \mapsto [0, 0]^{2}$, $R'(S) = U^{2} d(S)$, $U^{2} \in R^{2}$ one neurof function
 $T: policy $S \mapsto D_{A}$, $E_{neurop} [U^{2}(S_{1})] = E[\frac{\pi}{2}e^{-r}(R(S)]T] : E[\frac{\pi}{2}e^{-r}(U^{2}(S)]T] : W [E[\frac{\pi}{2}e^{-r}(U^{2}(S)]T]]$
 $M(\pi): feature expectations, $M(\pi) : E[\frac{\pi}{2}e^{-r}(R(S)]T] : E[\frac{\pi}{2}e^{-r}(U^{2}(S)]T]$
 $Note, R is a heav combination $\frac{\pi}{2}e^{-r}(R(S)]T] : C(R) = 2M(\pi) = \lambda M(\pi)$
 $Note, R is a heav combination $\frac{\pi}{2}e^{-r}(R(S)]T] : C(R) = 2M(\pi) = \lambda M(\pi) = \lambda M(\pi)$
 $R^{2} = M(\pi)$
 $Note, R is a heav combination $\frac{\pi}{2}e^{-r}(R) = \pi^{2r} d$
 $\cdot former : M_{E} : M(\pi_{E}) = n trigetoring $\frac{\pi}{2}e^{-r}(R) = \pi^{2r} d$
 $\cdot former : M_{E} : M(\pi_{E}) = n trigetoring $\frac{\pi}{2}e^{-r}(R) = \pi^{2r} d$
 $R^{2} = \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} d(\pi)$
 $R^{2} = \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} R(\pi)$
 $R^{2} = \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} R(\pi)$
 $R^{2} = \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} \frac{\pi}{2}e^{-r} R(\pi)$
 $R^{2} = \frac{\pi}{2}e^{-r} \frac{$$$$$$$$

• Theoretical results • Theoretical results • Theorem 1: Lot an MDP\R, feature $\phi = S \mapsto \text{Eo.1}^k$, and any E > 0 be given. Then the apprenticeship rearring algorithm will terminate with $t^{(i)} \in E$ after at most $n = O\left(\frac{k}{(1+r)^2 e^{-log}} \log \frac{k}{(1+r)^2}\right)$ Heretions.

Theorem 2: lower bound for
$$M$$
, (samples request).

$$M \not = \frac{2k}{(\ell(l-T))^2} \log \frac{2k}{8}.$$

Proofs are skipped.