Skip to main content

Basics

Book

  • An Introduction to Optimization, 4th Edition - Edwin Chong and Stanislaw Zak

Complete Handwritten Notes

Intro

In this section we consider the optimization problem

minimize    f(x)subject  to    xΩ.\begin{gather*} minimize\; \;f(x) \\ subject\; to \; \; x \in \Omega. \end{gather*}

The function f:RnRf:\mathbb{R}^n \to \mathbb{R} that we wish to minimize is a real-valued function called the objective function or cost function. The vector xx is an nn-vector of independent variables: x=[x1,x2,,xn]TRnx=[x_1,x_2,\cdots,x_n]^T\in\mathbb{R}^n. Tha variables x1,,xnx_1,\cdots,x_n are often referred to as decision variables. The set Ω\Omega is a subset of Rn\mathbb{R}^n called the constraint set or feasible set.

Definition

Suppose that f:RnRf:\mathbb{R}^n\to \mathbb{R} is a real-valued function defined on some set ΩRn\Omega \subset \mathbb{R}^n. A point xΩx^* \in \Omega is a local minimizer of ff over Ω\Omega is there exists ε>0\varepsilon > 0 such that f(x)f(x)f(x)\ge f(x^*) for all xΩx \in \Omega if f(x)f(x)f(x)\ge f(x^*) for all xΩ\{x}x \in \Omega \backslash \{x^*\}.

Conditions for Local Minimizers

Definition

A vector dRn,d0d \in \mathbb{R}^n, d \ne 0, is a feasible direction at xΩx \in \Omega if there exists α0>0\alpha_0>0 such that x+αdΩx+\alpha d\in \Omega for all α[0,α0]\alpha \in [0,\alpha_0].

Theorem of First-Order Necessary Condition (FONC)

Let Ω\Omega be a subset of Rn\mathbb{R}^n and fC1f\in C^1 a real-valued function on Ω\Omega. If xx^* is a local minimizer of ff over Ω\Omega, then for any feaible direction dd at xx^*, we have

dTf(x)0.\begin{gather*} d^T\nabla f(x^*)\ge 0. \end{gather*}

Proof

Define

x(α)=x+αdΩ.\begin{gather*} x(\alpha)=x^*+\alpha d\in \Omega. \end{gather*}

Note that x(0)=xx(0) = x^*. Define the composite funcition

ϕ(α)=f(x(α)).\begin{gather*} \phi(\alpha)=f(x(\alpha)). \end{gather*}

Then, by Taylor's theorem,

f(x+αd)f(x)=ϕ(α)ϕ(0)=ϕ(0)α+o(α)=αdTf(x(0))+o(α),\begin{gather*} f(x^*+\alpha d)-f(x^*)=\phi(\alpha)-\phi(0)=\phi'(0)\alpha+o(\alpha)=\alpha d^T\nabla f(x(0))+o(\alpha), \end{gather*}

where α0\alpha\ge 0. Thus, if ϕ(α)ϕ(0)\phi(\alpha)\ge \phi(0), that is, f(x+αd)f(x)f(x^*+\alpha d) \ge f(x^*) for sufficiently small values of α>0\alpha > 0 (xx^* is a local minimizer), then we have to have dTf(x)0d^T\nabla f(x^*)\ge 0.

Corollary (Interior Case)

Let Ω\Omega be a subset of Rn\mathbb{R}^n and fC1f\in C^1 a real-valued function on Ω\Omega. If xx^* is a local minimizer of ff over Ω\Omega and if XX^* is an interior point of Ω\Omega, then

f(x)=0.\begin{gather*} \nabla f(x^*) = 0. \end{gather*}

Proof

Suppose that ff has a local minimizer xx^* that is an interior point of Ω\Omega. Because xx^* is an interior point of Ω\Omega, the set of feasible dierctions at xx^* is the whole of Rn\mathbb{R}^n. This, for any dRnd\in \mathbb{R}^n, which implies that f(x)=0\nabla f(x^*)=0.

Theorem of Second-Order Necessary Condition (SONC)

Let ΩRn,fC2\Omega \subset \mathbb{R}^n, f \in C^2 a function on Ω,x\Omega, x^* a local minimizer of ff over Ω\Omega, and dd a feasible direction at xx^*. If dTf(x)=0d^T\nabla f(x^*)=0, then

dTF(x)d0,\begin{gather*} d^TF(x^*)d \ge 0, \end{gather*}

where FF is the Hessian of ff.

Proof

We prove the result by contradiction. Suppose that there is a feasible direction dd at xx^* such that dTf(x)=0d^T\nabla f(x^*) = 0 and dTF(x)d<0d^TF(x^*)d < 0. Let x(α)=x+αdx(\alpha)=x^*+\alpha d and define the composite function ϕ(α)=f(x+αd)=f(x(α))\phi(\alpha)=f(x^*+\alpha d)=f(x(\alpha)). Then, by Taylor's theorem,

ϕ(α)=ϕ(0)+ϕ(0)α22+o(α2),\begin{gather*} \phi(\alpha)=\phi(0)+\phi''(0){\alpha^2\over 2}+o(\alpha^2), \end{gather*}

where by assumption, ϕ(0)=dTf(x)=0\phi'(0) = d^T\nabla f(x^*)=0 and ϕ(0)=dTF(x)d<0\phi''(0)=d^TF(x^*)d<0. For sufficiently small α\alpha,

ϕ(α)ϕ(0)=ϕ(0)α22+o(α2)<0,\begin{gather*} \phi(\alpha)-\phi(0)=\phi''(0){\alpha^2\over 2}+o(\alpha^2)<0, \end{gather*}

that is,

f(x+αd)<f(x),\begin{gather*} f(x^*+\alpha d) < f(x^*), \end{gather*}

which contradicts the assumption that xx^* is a local minimizer. Thus,

ϕ(0)=dTF(x)d0.\begin{gather*} \phi''(0)=d^TF(x^*)d\ge 0. \end{gather*}

Corollary (Interior Case)

Let xx^* be an interior point of ΩRn\Omega \subset \mathbb{R}^n. If xx^* is a local minimizer of f:ΩR,fC2f:\Omega\to\mathbb{R},f\in C^2, then

f(x)=0,\begin{gather*} \nabla f(x^*)=0, \end{gather*}

and F(x)F(x^*) is positive semidefinite (F(x)0F(x^*)\ge 0); that is, for all dRnd\in \mathbb{R}^n,

dTF(x)d0.\begin{gather*} d^TF(x^*)d\ge 0. \end{gather*}

Proof

If xx^* is an interior point, then all directions are feasible. The result then follows from the previous corollary and SONC.

Theorem of Second-Order Sufficient Condition (SOSC), Interior Case

Let fC2f \in C^2 be defined on a region in which xx^* is an interior point. Suppose that

  1. f(x)=0\nabla f(x^*) = 0.
  2. F(x)>0F(x^*) > 0. Then, xx^* is a strict local minimizer of ff.

Proof

Because fC2f\in C^2, we have F(x)=FT(x)F(x^*)=F^T(x^*). Using assumption 2 and Rayleigh's inequality it follows that if d0d\ne 0, then 0<λmin(F(x))d2dTF(x)d0<\lambda_{min}(F(x^*))\|d\|^2\le d^TF(x^*)d. By Taylor's theorem and assumption 1,

f(x+d)f(x)=12dTF(x)d+o(d2)λmin(F(x))2d2+o(d2).\begin{gather*} f(x^*+d)-f(x^*)={1\over 2} d^TF(x^*)d + o(\|d\|^2)\ge {\lambda_{min}(F(x^*)) \over 2}\|d\|^2+o(\|d\|^2). \end{gather*}

Hence, for all dd such that d\|d\| is sufficiently small,

f(x+d)>f(x),\begin{gather*} f(x^*+d)>f(x^*), \end{gather*}

which completes the proof.